On-Grid, Off-Grid And Hybrid Solar Systems what`s the big difference?

This blog explains the difference between three types of solar systems, namely; On-Grid, Off-Grid And Hybrid Solar Systems.

What are the benefits of a grid-connected solar system vs. the Off-Grid system?

1. On-Grid System

Clean Energy Reviews gives clear illustrations and explanations of what On-grid or grid-tie solar systems are by far the most common and widely used by homes and businesses. These systems do not need batteries and use common solar inverters and are connected to the public electricity grid. Any excess solar power that you generate is exported to the electricity grid and you usually get paid a feed-in-tariff (FiT) or credits for the energy you export.

Unlike hybrid systems, on-grid solar systems are not able to function or generate electricity during a blackout due to safety reasons. Since blackouts usually occur when the electricity grid is damaged; If the solar inverter was still feeding electricity into a damaged grid it would risk the safety of the people repairing the fault/s in the network. Most hybrid solar systems with battery storage are able to automatically isolate from the grid (known as islanding) and continue to supply some power during a blackout.

Batteries are able to be added to on-grid systems at a later stage if required. The Tesla Powerwall 2 is a popular AC battery system which can be added to an existing solar system.

how on-grid or grid tie solar power system work

In an on-grid system, this is what happens after electricity reaches the switchboard:

  • The meter. Excess solar energy runs through the meter, which calculates how much power you are either exporting or importing (purchasing).

  • Metering systems work differently in many states and countries around the world. In this description, I am assuming that the meter is only measuring the electricity being exported to the grid, as is the case in most of Australia. In some states, meters measure all solar electricity produced by your system, and therefore your electricity will run through your meter before reaching the switchboard and not after it. In some areas (currently in California), the meter measures both production and export, and the consumer is charged (or credited) for net electricity used over a month or year period. I will explain more about metering in a later blog.

  • The electricity grid. The electricity that is sent to the grid from your solar system can then be used by other consumers on the grid (your neighbors). When your solar system is not operating, or you are using more electricity than your system is producing, you will start importing or consuming electricity from the grid.

 

2. Off-Grid System

An off-grid system is not connected to the electricity grid and therefore requires battery storage. An off-grid solar system must be designed appropriately so that it will generate enough power throughout the year and have enough battery capacity to meet the home’s requirements, even in the depths of winter when there is less sunlight.

The high cost of batteries and inverters means off-grid systems are much more expensive than on-grid systems and so are usually only needed in more remote areas that are far from the electricity grid. However battery costs are reducing rapidly, so there is now a growing market for off-grid solar battery systems even in cities and towns.

how off-grid solar systems work.png

There are different types of off-grid systems which we will go into more detail later, but for now, I will keep it simple. This description is for an AC coupled system, in a DC-coupled system power is first sent to the battery bank, then sent to your appliances. To understand more about building and setting up an efficient off-grid home see our sister site go off-grid/hybrid

  • The battery bank. In an off-grid system, there is no public electricity grid. Once solar power is used by the appliances in your property, any excess power will be sent to your battery bank. Once the battery bank is full it will stop receiving power from the solar system. When your solar system is not working (night time or cloudy days), your appliances will draw power from the batteries.

  • Backup Generator. For times of the year when the batteries are low on charge and the weather is very cloudy, you will generally need a backup power source, such as a backup generator or gen-set. The size of the gen-set (measured in kVA) should be adequate to supply your house and charge the batteries at the same time.

 

3. Hybrid System

Modern hybrid systems combine solar and battery storage in one and are now available in many different forms and configurations. Due to the decreasing cost of battery storage, systems that are already connected to the electricity grid can start taking advantage of battery storage as well. This means being able to store solar energy that is generated during the day and using it at night. When the stored energy is depleted, the grid is there as a backup, allowing consumers to have the best of both worlds. Hybrid systems are also able to charge the batteries using cheap off-peak electricity (usually after midnight to 6 am).

how hybrid solar power system work

There are also different ways to design hybrid systems but we will keep it simple for now. 

  • The battery bank. In a hybrid system, once the solar power is used by the appliances in your property, any excess power will be sent to the battery bank. Once the battery bank is fully charged, it will stop receiving power from the solar system. The energy from the battery can then be discharged and used to power your home, usually during the peak evening period when the cost of electricity is typically at it’s highest.

  • The meter and electricity grid. Depending on how your hybrid system is set up and whether your utility allows it, once your batteries are fully charged excess solar power not required by your appliances can be exported to the grid via your meter. When your solar system is not in use, and if you have drained the usable power in your batteries your appliances will then start drawing power from the grid.

Simplified layout of a hybrid solar system
Hybrid solar systemOff grid solar systemOn grid solar systemOn-grid

1 comment

Jeeba

Jeeba

Hey. Now that’s information! I didn’t know any of this.

Leave a comment